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Irrotational fluctuations near a turbulent 
boundary layer 

By P. BRADSHAW 
Aerodynamics Division, National Physical Laboratory 

(Received 12 January 1966) 

A verification of some of the predictions of the theory of Phillips (1955) is pre- 
sented, and the relation between one-dimensional and two-dimensional wave- 
number spectra is discussed. The convection velocity of the irrotational field 
deduced from measurements of the frequency spectrum alone appears to be about 
0.9Ul in the frequency range carrying most of the energy. It follows that the 
pressure-fluctuation spectrum is proportional to the velocity-fluctuation spec- 
trum and varies as w2 at low frequency. The discrepancy between this result and 
measurements of wall-pressure spectra is plausibly attributed to extraneous 
sound. 

1. Introduction 
Turbulent flows always include fluctuations of static pressure as well as vor- 

ticity. The pressure fluctuations extend beyond the rotational region into the 
so-called ‘near field’, where they are related to the velocity fluctuatims by 
Bernoulli’s equation. From another point of view, the near-field velocity fluctua- 
tions can be regarded as directly induced by the vortex lines in the rotational 
flow. The near-field fluctuations, being irrotational, can be described by a poten- 
tial, so that they are completely specified in a given volume of space if the 
boundary conditions are specified: in particular they are specified in the half- 
space x, > 0 by the normal velocity component or ‘upwash’ @/ax, in the plane 
x, = 0 and the condition grad$ = 0 at  infinity. Phillips (1955) has obtained a 
very complete description of the motion corresponding to a statistically station- 
ary (homogeneous) random distribution of &$/ax, = uzo, representing the near 
field of a turbulent flow occupying part or all of the half-space x, < 0. The motion 
is presumed incompressible so that the potential satisfies Laplace’s equation. He 
does not treat the problem of determining u20 for a given turbulent flow: this has 
been studied approximately by Ffowcs Williams (1960), who indicates that the 
contribution from the turbulence/mean shear interaction greatly exceeds the 
direct contribution from the u,-component within the turbulence, a result in 
conformity with the calculations of Lilley (1963) and others on the very similar 
problem of the pressure fluctuations on a solid surface adjacent to a turbulent 
flow. Phillips shows that the velocity potential satisfying Laplace’s equation with 
the boundary condition u20 = cos (klxl + k3x3) is 

4 = - k-l exp ( - kxz) cos (k,x, + k,x3), 
14 Fluid Mech. 27 
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where k2 = k! + k;, and the general solution for the velocity potential in the half- 
space x 2  > 0 is 

q5 = - dA (k) k-l exp ( - kx,) exp (i[klxl + k3x31), 

uZ0 = / d A ( k )  exp (i[klxl+ k3x3]) where 

and dA(k) is a random function which can be thought of as a Fourier amplitude. 
(Here we use the usual notation in which x, is the direction approximately 
normal to the boundary of the turbulent flow and x1 is the direction of mean 
motion, instead of Phillips’s notation, in which x1 is the direction normal to the 
boundary: conformity seems to be preferable to symmetry.) From this solution 
Phillips derives several expressions for the intensity spectra, microscales and so 
on in the irrotational region. Some of these will be quoted below, but the one most 
easily checked experimentally is that 2 should vary as xz4 for x, large compared 
with the wavelengths carrying most of the turbulent energy. It is assumed in the 
solution that the ‘upwash’ distribution u , ~  is equivalent to an array of dipoles, 
that is, that the source strength, or average value of uz0 over the plane x, = 0, is 
zero at  any instant. Liepmann (1962) has pointed out that a random ‘whipping’ 
of the shear layer as a whole would contribute a source term and invalidate the 
solution, but no such effect is apparent in the present results for a boundary 
layer or the results of Bradbury (1963) for a free jet in a moving stream. In 
Phillips’s original paper, measurements by Townsend in a wake are reproduced, 
and a region where 3 varies as xi4 is identified. However, this region is in fact in 
the intermittent part of the flow and, whereas the contribution of the rotational 
fluctuations to may have been fairly small, the above-mentioned condition 
for large x, was probably not satisfied. Liepmann ( 1962) remarks that the agree- 
ment with theory may have been largely coincidental, and the possibility of 
‘whipping ’ of the wake cannot be eliminated. While there is no reason whatso- 
ever to doubt the accuracy of Phillips’s theory it, is useful to have numerical 
values for some of the constants and to establish regions of validity for the 
approximations in the theory. The several ad hoc investigations of the near field 
of circular jets, undertaken because of the practical interest in the effect of gas 
turbine exhausts on nearby parts of an aircraft structure, are not very helpful 
because the flow differs so greatly from the homogeneous plane flow treated by 
Phillips. Stewart (1956) indicated a formal solution for the sew-preserving circular 
jet or axisymmetric mixing layer, but it involved associated Legendre functions 
of unknown properties and limited utility which he did not study further. 

The present work was stimulated by an excellent confirmation of the x24 law 
obtained by Bradbury (1963, 1965) in the highly advantageous experimental 
situation of a high-speed jet in a slow-moving stream: the irrotational fluctua- 
tions exceeded the free-stream turbulence of the wind tunnel for a considerable 
distance outside the flow, whereas Townsend’s original measurements near a 
wake were hampered by the disappearance of the irrotational fluctuations into 
the background turbulence, about 0.09 yo of the free-stream velocity. While the 
plane jet in a moving stream is not of much practical interest, the boundary layer 
is, and so some measurements have been made in the NPL 59 in. x 9 in. boundary- 
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layer tunnel (Bradshaw & Hellens 1964)) which has a u,-component turbulence 
level of about 0-04 % in the free stream. In order to ensure that the irrotational 
fluctuations due to the roof boundary layer did not influence the results, the 
measurements were made 4ft. from the leading edge, where the boundary layer 
was only about 0.8 in. thick compared with the 9 in. height of the working section, 
at  a Reynolds number U,x/v of about 3 x lo6 and in zero pressure gradient. Some 
further measurements have been made, at the same station and about the same 
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FIGURE 1. Longitudinal-component intensity near constant-pressure boundary layer. 
0, Present experiment U,S,/v = 7200; 0, Klebanoff U,S,/v = 11,500. 

value of U,x/v, in a strongly retarded equilibrium boundary layer with U, cc x-0.255 
(Bradshaw 1965). The transformer-coupled constant-current hot-wire apparatus 
(Ferriss 1963) was used and the noise level of the electronics was always negligible 
except for pick-up at the mains frequency, 50 c/s. 

Dumas (1964) has published some measurements of the irrotational fluctua- 
tions near a boundary layer in zero pressure gradient which extend the results 
reported by Pavre, Gaviglio & Dumas (1957) and are in good agreement with the 
present work. 

2. The u,-component intensity and the xi4 law 
The u,-component intensity measurements in zero pressure gradient (figure 1)  

fall close to the line K;/U; = O.O034(y/6, - 4.8)-4 for large values of y. It should 
be noted that the last three points were obtained as small differences between the 
total mean-square intensity and the value in the centre of the tunnel, so that the 

14-2 
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proximity of these points to the line is largely a matter of luck. The measurements 
at small x2 join up well with the results of Klebanoff (1955). The intensity 
measurements in the boundary layer with U, cc ~ - 0 ~ ~ ~  are shown in figure 2: the 
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FIGURE 2 (a) Longitudinal-component intensity near boundary layer with U, ot5-0.255. 

(b)  Normal-component intensity near boundary layer with 73, ~ c 2 - O . ~ ~ ~ .  

u2 measurements and the single u3 point have been corrected by subtracting a 
spurious signal due to eddy shedding from the prongs of the hot wire probe. The 
measurements become unreliable near the centre line of the tunnel because of 
the irrotational field of the roof boundary layer, and a rather conjectural 'free 
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stream ’ level has been subtracted from each component. Therefore the results 
are not as reliable a verification of the xi4 law as the measurements in zero 
pressure gradient, but the equations of the best straight line through the u1 
measurements is shown in figure 2 (a).  The intercept on the y-axis has no physical 
significance: in particular, it cannot strictly be identified with the region of the 
layer that contributes most to the irrotational field, although in both boundary 
layers it is, plausibly, at  about 0-8 of the distance from the surface at which the 
intermittency is 0.5 (the average position of the turbulence front). This is because 
the xi4 law becomes valid only at distances from the plane x2 = 0 which are large 
compared with the wavelengths of the energy-containing motion in the plane 
x2 = 0, so that the intercept is ill-defined and subject to a most-probable error 
of the order of the aforementioned wavelengths. Moreover, any plane can be 
chosen as x2 = 0 for the purpose of the theory and a t  a sufficient distance from 
such a plane the intensity will vary as x;4, so that x2 = 0 is again shown to be 
essentially ill-defined. 

Measurements of the u2- and u,-components have not been made in the present, 
tests in zero pressure gradient, because the mean-square intensities of these 
components in the free stream of the wind tunnel are about six times the intensity 
of the u,-component in the free stream, so that the irrotational fluctuationswould 
be difficult to discern above the background level, quite apart from the usual 
difficulties with eddy shedding from the probe. Phillips’s theory gives the relation 
ui = ui + ui, and Grant’s (1958) correlation measurements show that the u2-com- 
ponent correlations in the outer part of the turbulent flow are roughly equal for 
rl and for r3 separations, so that to a first approximation the irrotational field is 
axisymmetric about the x,-axis and the field is thhs completely described by the 
u,-component. (Here ‘ axisymmetric ’ means only ‘invariant to rotation about 
the axis’ and does not include invariance with respect to reflections in the x1x3 
plane as Batchelor’s (1956) definition does. Also, in this paper ‘two-dimensional ’ 
refers to (k,, k3) spectra in the sense that ‘one-dimensional’ refers to Ic, spectra: 
it  does not mean ‘independent of x3’.) 

Measurements of u2-component correlations have not been made within the 
retarded boundary layer, but i t  is immediately clear that u; + in the irrota- 
tional field so that the latter is far from axisymmetric in this case. The reasons 
for this will be discussed below, but they do not reflect upon the deduction from 
Grant’s measurements that the irrotational field of the boundary layer in zero 
pressure gradient is roughly axisymmetric, and it is probable that this deduction 
is valid for boundary layers in moderate pressure gradients also. Since the 
assumption of axisymmetry enables us to derive a surprisingly large amount of 
information from a small quantity of experimental data, we proceed to discuss 
this special case of Phillips’s theory. 

- _ _  

_ _  

3. Wave-number and frequency spectra in an axisymmetric field: one- 
dimensional and two-dimensional spectra 

Phillips’s analysis is formulated in terms of the two-dimensional wave-number 
spectrum of the normal-component fluctuations, @22(k,, k3). In  the most general 
case, this can be obtained experimentally only as the two-dimensional Fourier 
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transform of the correlation R2,(r,, 0, r3) for all r l ,  r3.  If the irrotational field is 
axisymmetric, R,, and are functions only of the magnitude, and not of the 
direction, of the separation and wave-number vectors respectively, and can be 
written R22(r) and @,,(k) where r = J(r; + rg) and k = ,/(Icy + kg). Thus the field 
is completely determined by, for instance, a measurement of R2,(rl, 0,O).  If the 
irrotational field obeys Taylor’s hypothesis and is convected past the measure- 
ment point as a rigid pattern, then R(rl, 0,O) = R(U,7) where the convection 
velocity U, is implied to be independent of wave-number but need not be the 
same as the fluid velocity, and the one-dimensional wave-number spectrum 

q5(Jh) = Srn @ ( k ) d k ,  
--a, 

can be obtained as the frequency spectrum $(w/U,), which is much easier to 
measure than a spatial correlation, particularly in the low-intensity irrotational 
field. The assumption of axisymmetry in zero pressure gradient has been dis- 
cussed above: the assumption of the truth of Taylor’s hypothesis is at least as 
justified for the irrotational field as for the turbulent flow itself, and the in- 
accuracy of both assumptions is likely to be much less than the inaccuracy of the 
R(rl, 0, r3) measurements required to justify them. Correlations with ( r l ,  0,O) 
separation would be extremely difficult to make because of the effect of the wake 
of one hot wire probe on the other. 

The following discussion is based on measurements of the frequency spectrum 
q5(w/K), which is assumed to be equal to the one-dimensional wave-number 
spectrum q5(kl). The value of U, can actually be deduced from the frequency 
spectrum measurements and some of the results of Phillips’s theory. 

4. The convection velocity and the pressure fluctuations 
In the appendix it is deduced from Phillips’s theory that the leading terms of 

the normal-component spectrum in the plane x2 = 0 can be written 8,k2 where 
O2 is a constant given directly by the behaviour of the longitudinal-component 
spectrum Qll(kl) a t  small k, if the convection velocity U, is known, since 

q511(kl) 02kyx2 e 2 w 2 / X , q 2 .  

Thus it is necessary, and not merely desirable, to know the convection velocity. 
It can in fact be deduced from the behaviour of q5,,(o/U,) at large w by finding the 
best fit to the exponential cut-off. A suitable graphical method is to plot 

x2 a 1% q5lllaX2, 

(theoretically equal to - 4- 20x2/U,: see appendix, (13a)  and (15a))  against x, 
and fit the best straight line to the points: at first sight this might appear to in- 
volve giving a physical significance to the plane x, = 0, but in fact the approxima- 
tions involved in the analytical form imply that it is valid only for large x2, like 
the xi4 law for the intensity, and therefore does not depend critically on the 
origin of x2 .  The determination of convection velocity from single-point measure- 
ments is not possible for general turbulent flows: in the particular case of the 
irrotational field we are in effect assuming that the conditions a t  x2 = 0 are 
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known so that measurements of # ( w )  a t  different x2 amount to a degenerate 
filtered space correlation, which resolves the paradox. 

The pressure-fluctuation spectrum in the irrotational field, which it is interest- 
ing to compare with the spectrum at the wall, is obtained from the unsteady 
form of Bernoulli’s equation, 

F+P+~PIUl2 = P(a#/at) 
(or from Euler’s equation using the conditions of irrotationality aui/axi = auj/axi), 
making the assumption that a unique convection velocity exists so that 

ap t  = -u,(a/ax), 

- p/p = (U, - q-) U l  + i(U2, + u; + Ui) 

where U, is not necessarily equal to U,. We find 

on discarding the mean part F++pU?. Physically this equation, which is of 
course valid even if the irrotational field is not axisymmetric, means that the 
pressure fluctuation is partly the result of dynamic-pressure fluctuations directly 
due to the irrotational velocity fluctuations, and partly the result of flow at speed 
U, over an equivalent ‘wavy wall’ moving at the convection velocity U,. (The 
‘wavy wall ’ is the displacement surface, which is not in general the same as the 
laminar-turbulent interface although both are convected at approximately the 
speed of the large eddies.) Even if the convection velocity is as high as 0.95 U,- 
and both the experimental results presented below and the wall-pressure 
measurements of other workers suggest that it is probably less-the wavy-wall 
term greatly exceeds the quadratic term since ( q ) & / U ,  < 0.002 in the irrotational 
region (actually the quadratic term is likely to be of the same order as the error 
incurred by assuming a/at = - q a / a x ,  and we have already ignored this error). 
Thus the two-dimensional pressure-fluctuation spectrum is nearly the same shape 
as the u,-component spectrum. (For another discussion of the wavy-wall concept 
see Liepmann (1954) : unfortunately Liepmann’s analytical results are based on 
the assumption O(k) = constant, which does not satisfy the continuity condition.) 

It follows from 15 (b) and the above relation between velocity and pressure 
fluctuations that the spectrum of the pressure fluctuations outside the boundary 
layer should tend to zero as w2 for small w :  strictly the spectral density at zero 
frequency takes a non-zero value because the contribution of the quadratic terms 
behaves approximately as a convolution integral which is bound to be finite at 
zero frequency, but we have shown that the quadratic contribution is very small. 
Since it is difficult to imagine circumstances in which the low wave-number 
contributions to the pressure fluctuation could differ markedly in character be- 
tween the irrotational field and the wall-even a t  the peak of the spectra shown 
in figure 3 the wavelength is about four times the distance from the measurement 
point to the wall-it follows that the wall-pressure spectrum should also have a 
region of w2 dependence, possibly with a noticeable contribution very near 
w = 0 from the quadratic terms. This is of course the conclusion reached by 
Lilley (1963) and others, by arguments concerning the relative importance of the 
‘ turbulence/mean shear ’ and ‘ turbulence/turbulence ’ (quadratic) terms in the 
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Poisson equation for the pressure. We have carefully refrained from invoking 
these arguments directly although they are closely related to the considerations 
above. Corcos (1964), using the pressure-velocity correlation data of Wooldridge 
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FIGURE 3. Frequency spectrum of longitudinal component near constant-pressnrc 
boundary layer. x ,  y/6, = 10.3; @, y/Sl = 10-3 tunnel turbulence subtracted; 0, 
y/S, = 13.3; 0, y/S, = 16.4; ---0---, tunnel turbulence. - , wall-pressure spectrum 
(Serafini), and -----, q522 at yJS, = 4 (Klebanoff) (arbitrary vertical positions); .-.-, 
asymptotic 6)' dependence at y/S, = 10.3. 

& Willmarth (1962), has derived a value for the 'turbulence/mean shear' contri- 
bution to the wall-pressure intensity which is much less than the measured 
intensity, and concludes that the turbulence/turbulence terms are not small, so 
that the matter cannot be regarded as settled. As is well known, experiments on 
wind-tunnel boundary layers totally fail to verify the existence of an o2 region 
in the spectrum of the wall-pressure fluctuations, measurements in the NPL 
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boundary-layer tunnel (Wills 1964) being no exception: the scatter between the 
results of different workers for the low-frequency end of the spectrum is enormous, 
indicating that extraneous influences are at least partly responsible. Certainly 
the tunnel turbulence is high enough to contribute noticeably to the near-field 
velocity fluctuations, particularly at low frequency, but it is not large enough 
to explain the apparent discrepancy between the low-frequency behaviour 
of the near-field pressure spectrum calculated from (15) and the behaviour of 
the measured wall-pressure spectra. If, however, part of the tunnel ‘turbulence ’ 
consisted of sound waves, then a velocity fluctuation intensity u: would cor- 
respond to a pressure fluctuation intensity p2agu? which is several orders of 
magnitude greater than p2( U, - UJ2u: at the speeds of the present experiment. In  
fact, the observed low-frequency behaviour of the pressure-fluctuation spectra 
in the boundary-layer tunnel could be roughly accounted for if only about one- 
tenth of the low-frequency tunnel ‘ turbulence ’ consisted of noise and Wills (1965) 
has recently measured spatial correlations in narrow frequency bands which con- 
firm that a large part of the low-frequency pressure fluctuation consists of sound 
waves travelling upstream, presumably from the diffuser of the wind tunnel. The 
only wall-pressure spectra which have a detectable w2 region are the wall-jet 
measurements of Lilley & Hodgson (1960) (confirmed by measurements at 
NPL) and measurements on a glider wing, also by Hodgson (1962): in both these 
environments the external noise level was probably low compared with the 
pressure fluctuations. 

It is worth remarking explicitly that the two-dimensional u,-component 
spectrum is not axisymmetric, so that an axisymmetric irrotational field does 
not imply an axisymmetric pressure-fluctuation field: it is quite compatible with 
actual measurements of pressure-fluctuation correlations with separation in the 
r3 direction. 

5. Frequency spectra : experimental results 
(i) Zero pressure gradient 

The behaviour of the experimental $ll(w) spectra near zero frequency is obscured 
by the free-stream turbulence (figure 3) and it is clear that subtracting the free- 
stream spectral density from the measured spectral densityis rather inaccurate : it  
is noticeable that the roughly constant value to which the measured spectra tend 
at  low frequency decreases by a factor of about 2 as y/6,  increases from 10.3 to 16.4 
(x,/6, increasing from about 5.5 to 11.6, again about a factor of 2 ) ,  but since the 
spectral density of the free-stream turbulence, measured on the centre line of the 
tunnel, lies midway between the two extremes it is not possible to say whether 
this represents any significant trend. The line shown as the asymptotic variation 
at  y/6, = 10-3 implies S2/(U!6f) = 2.1 x 10-3 from equation ( 1 5 b )  (taking 
U, = 0.9Ul and noting that $(a) = $(kl/U,) + $( - kl/Uc)). 

The behaviour of the spectra a t  the highest frequencies is again influenced by 
the tunnel turbulence but it is seen that the cut-off is much more rapid than the 
cut-off of Klebanoffs $22 spectrum at y/6, = 4, or the wall-pressure spectrum, 
which are also shown in figure 3 at arbitrary vertical positions on the graph. 
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The microscales were calculated from the second moments of the frequency 
spectra. At y/8, = 10.3 and 13.3 the microscales are 2.728, and 4 - 8 4  respectively, 
assuming xz = 0 at  y/8, = 4.8 and U,/U, = 0-9. The theoretical values for the 
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FIGURE 4. For legend see p. 220. 

10 

axisymmetric case, h = 2( 15)-8xz, are 2.858, and 4-46, respectively. The agree- 
ment is reasonable, and provides further evidence in favour of the assumption 
of axisymmetry although the test is not a severe one. 

The u2 and u3 spectra calculated from the u1 spectrum on the assumption of 
axisymmetry are shown in figures 4(a)-4 (c ) ,  and the CD,,(k) spectra are shown in 
figure 5. The difference between the three OZ2(k)  spectra at  low wave-number is 
greater than the expected factor exp ( - 2kx,), and must be attributed to experi- 
mental errors at low frequencies. Using the results a t  y/8, = 10.3, the three 
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FIGURE 4 (coat.). For legend see p. 220. 

methods of obtaining 02, the constant in the expression O(k) N 02k2 for the low 
wave-number behaviour of the u2 spectrum in the plane x2 = 0 ,  give 

Lt {2x;#22(~c1)} = 3.4 x 10--3~33:. 
k,+O 

All three figures are affected by the difficulty of allowing for the effect of tunnel 
turbulence on q511(kl) a t  small k,: the first figure is the most reliable and the others 
strongly suggest that the best choice for the notional ‘plane of origin’ of the 
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irrotational field, x2 = 0, is further from the surface than the distance 4*86,, 
deduced from the intensity measurements of figure 1, which was used in the 
calculations. Probably the slope of the straight line in figure 1 is affected by the 
increasing validity of the condition for the existence of an xi4 law, x2/8, & 1. 
The function B(k) = a2,(k)exp2kx2 varies as k2 up to a wave-number k8, of 

10;' 1 10 
W S l I U ,  

(4 
FIGURE 4. Frequency spectra near constant-pressure boundary layer x , $bll (measured) ; 
v, q422 and, 0, $b33 calculated from & spectrum. (a)  yIS, = 10.3; ( b )  y/Sl = 13.3; 
( c )  y/Sl = 16.4. 

slightly more than 0.1 and then begins to flatten out, but increases sharply for 
k8, > 0.5 (well past the peak of the @22(k)  spectrum) : this improbable behaviour 
may be partly due to numerical integration errors in the computer program, 
but i t  is more likely to be caused by inaccuracy of measurement of $ll(w) at high 
frequencies. The $,,(k3) spectrum, which is identical with the $33(kl) spectrum, is 
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qualitatively like the k, surface pressure fluctuation spectra measured by Wills 
(1965). 

The convection velocity could in principle be found from a comparison of the 
actual u,-component spectrum cut-off at high w with the asymptotic result 
#,, ot ktx-4 exp ( - 2k1x2), but it is more satisfactory to use graphs of against 
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FIGURE 5. Wave-number-nqpitude spectra near constant-pressure boundary layer. 
X ,  y/S, = 10.3; 0, y/S1 = 13.3; 0, y/6, = 16.4. 

x 2  for different medium frequencies where 8(k) N k2, and to compare them with 
the same asymptotic result. Separate measurements of the spectral density were 
made in the form of traverses in the y-direction a t  several fixed frequencies, and 
the free-stream spectral density (taken as that a t  the largest value of y, about 
3 in. or 306,) was subtracted from the results. Then for each w ,  x2(a log $/ax2)  
was plotted against x2 taking x2 = 0 at y/S, = 4.8, and the best straight line with 
an intercept of - Q on the vertical axis was fitted to the result. In most cases the 
plotted slopes were extremely scattered, especially a t  the larger values of y and 
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the extreme values of frequency where the free-stream spectral density over- 
whelmed the readings. The results for U, are shown in figure 6: in all cases except 
that at  the lowest frequency, the best straight line was chosen irrespective of the 
plausibility of the resulting value for U, so that the consistency of the results is 

10-1 1 

wsllu, 
FIQURE 6. Convection velocity, obtained from #ll(w, x2) a t  constant w ,  near constant- 

pressure boundary layer. 

surprisingly good. The apparent increase of convection velocity with frequency is 
unlikely to be significant, although it is perfectly plausible when one realizes that 
the high-frequency contributions to the irrotational field probably come from the 
turbulence in the ‘bulges’ in the intermittent region of the flow rather than the 
more intense, but more distant, turbulence near the wall. The accuracy of the 
measurements is likely to be best within the range 0.1 < wS,/U, < 0.3, where the 
spectral density is greatest, and we conclude that thhs convection velocity of the 
near-field irrotational fluctuations may be as high as 0.9Ul compared with the 
value of O.SU, usually quoted for the wall-pressure fluctuations. The root- 
mean-square pressure fluctuation at y/S, = 10.3, just outside the outermost 
boundary of the turbulent flow, can then be calculated from (15) as about 
4 x lO-4.4pl.J; or O.15r, compared with about 2-67 ,  on the surface. If the spectra 
of figure 3 are now regarded as pressure-fluctuation spectra, the ‘arbitrary’ 
position of Serafini’s spectrum is approximately a factor 100 lower than the cos- 
rect position: the actual factor is proportional to (U, - UJ2 and therefore highly 
uncertain. 

(ii) Adverse pressure gradient, r/; cx x-0-255 

In  the retarded equilibrium boundary layer with U, K x-0.255, the turbulent 
intensity, and more particularly the spectral density at low frequencies, is high 
enough for direct measurements of the uz- and u,-components of the irrotational 
fluctuations to be made, and the spectra of all three components at y/&, = 5-25 
(approximately the outer edge of the intermittently turbulent region) are shown 
in figure 7. It is clear that the u2 spectrum is not axisymmetrically related to the 
u1 spectrum, nor is the u,-component intensity equal to the u,-component 
intensity (in fact it  is very much smaller). This appears to cast doubt on the 
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assumption of axisymmetry as a f i s t  approximation in the boundary layer in 
zero pressure gradient. However, there is indirect evidence that the R,,(r, 0,O) and 
R,,(O, 0, r )  correlations within the retarded boundary layer may be very different 
from Grant's measurements in zero pressure gradient : this evidence comes from 
the measurements in a jet mixing layer reported by Bradshaw, Ferriss & Johnson 
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FIGURE 7. Frequency spectra near boundary layer with U l ~ x - o ~ 2 5 5 .  y/Sl = 5.25. 0, +ll; 

(l964), which showed that the RZ2(y, 0,O) correlation had a pronounced oscilla- 
tion which was absent from the R,,(O, 0, r )  correlation, the integral scales in the 
region of maximum turbulence intensity being respectively 0.015 and 0.038 
times the distance from the point of origin of the mixing layer. General observa- 
tions of the shear stress distribution and the intensity spectra within the retarded 
boundary layer suggest that its turbulence structure may be much closer to the 
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jet mixing layer than to the boundary layer in zero (or moderately adverse) 
pressure gradient. In  order to clear the matter up completely one would like to 
have measurements of the u2- and u,-component intensities in the irrotational 
field of the boundary layer in zero pressure gradient but, for reasons mentioned 
above, these would be very difficult to obtain. 

The spectra in the retarded boundary layer are clearly approaching an w2 
dependence at the lowest frequencies but unfortunately the lowest frequency of 
the spectrum analyser, 16 c/s, corresponds to uSl/Ul = 0-05 compared with 0.01 
in the boundary layer in zero pressure gradient. Another disadvantage of the 
greater thickness of the retarded boundary layer is that the shallow height of the 
tunnel prevented measurements of spectra being made over a sufficiently large 
range of y/S to define the convection velocity. The wall-pressure convection 
velocity measurements by Bradshaw (1965) suggest that it would be significantly 
less than in zero pressure gradient, as do the measurements ofa rather arbitrarily 
defined convection velocity within the turbulent fluid by Bradshaw (1966). 

The most interesting feature of the measurements in the retarded layer is the 
very strong correlation between the surface pressure fluctuation and the ul- 
component fluctuation in the irro+,ational field. The correlation coefficient in 
narrow frequency bands is plotted in figure 8: it  does not rise to unity, even at 
the lowest frequencies, but it seems very likely that it would so do if the contribu- 
tion of sound waves to the pressure fluctuation could be eliminated. The surface 
pressure fluctuation spectrum is shown in figure 9. It has a distinguishable peak: 
the spectral density at  the lowest frequencies approaches nearly the same value 
as in the measurements of Wills (1964) made in zero pressure gradient in the 
same tunnel, an additional demonstration that the lowest-frequency fluctuations 
are peculiar to the tunnel and not the boundary layer. Rpu$pp simulates the true 
low-frequency spectrum. 

6. Conclusions 
(I) The mean square intensity of the longitudinal-component fluctuation in 

the irrotational region of a constant-pressure boundary layer is given by 
u:/Uf = 0.0034(y/61-4.8)-4 for y/6, > 10 a t  UISl/v = 7200, corresponding to 

= 2.6(y/Sl - 4.8)-4: and in a retarded equiiibrium boundary layer with 

( 2 )  If the irrotational field is symmetrical about the x2-axis, an assumption 
supported, for the case of the constant-pressure boundarv layer, by correlation 
measurements within the turbulent flow, the longitudinal wave-number spectrum 
q511(kl) of the longitudinal component fluctuation determines the wave-number- 
magnitude spectrum # ( k )  of the normal-component fluctuation in the notional 
plane of origin of the irrotational field, either directly through an integral relation 
or indirectly through Fourier and Hankel transforms. Asymptotic relations for 
the one-dimensional spectra at large dist s from the plane of origin can be 
derived from these relations or special ca. of them, and the leading term in 
B(k) can be deduced directly from the low wave-number behaviour of &(kl) .  

(3) If the existence of a unique convection velocity U,, not necessarily equal 

- 

- 

- 

Ul cc x - ~ . ~ ~ ~ ,  b.7 u:/U: = 0*0009(~~/61- 2*76)-4. 

15 Fluid Mech. 27 
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to the free-stream velocity U,, is assumed, the frequency spectrum of the longi- 
tudinal component Qll(w) determines the whole irrotational field, and the con- 
vection velocity can be deduced from this frequency spectrum and the above 
asymptotic relations. The experimental value is very roughly O-gU, for the 
constant-pressure boundary layer. 

(4) If U' + U,, the pressure-fluctuation spectrum is dominated by a term 
p2( U, - UJ2 QI1(w) and therefore varies as w2 for small w .  This agrees with theo- 
retical results for the wall-pressure spectrum. The disagreement with measure- 
ments of the wall-pressure spectrum is attributed to the effect of extraneous 
sound on the latter, because an acoustic velocity fluctuation of intensity 3 
implies a pressure fluctuation intensity p 2 a i 3  compared with only pz(U, - U , ) 2 2  

for a hydrodynamic velocity fluctuation. 

I am indebted to Dr J. T. Stuart for the direct solution of equation (l), to Mr 
D. H. Ferriss for helpful discussions and for writing the computer programs, and 
to Mr M. G. Terrell for assistance with the experiments. 

The work described in this paper forms part of the research programme 
carried out by the Aerodynamics Division of the National Physical Laboratory 
for the Ministry of Aviation, and the paper is published by permission of the 
Director of the Laboratory. 

Appendix 
(i) Special results of Phillips's theory for an axisymmetric field 

To convert the one-dimensional wave-number spectrum q522(kl) into the axi- 
symmetric wave-number magnitude spectrum @22(k)  we require the inverse of 
the relation 

Substituting 
k2, = l / ~ ,  k2,+ki G k2 = l/z, g(x) = x - ~ Q ~ ~ ( x - + )  

and f(z) = z-%@22(z-4), 
the relation becomes 

This is a special case of the integral equation solved 
(1947). The solution is 

(2) 

by Margenau & Murphy 

under the restriction g(0 )  = 0 or Lt [k1q522(kl)] = 0, which is certainly satisfied 
by actual spectra. Finally, kl+m 
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Equation ( 1 )  can be inverted indirectly by taking the Fourier transform of 
$22(kl) to give the (axisymmetric) correlation as 

Then 

where B is the angle between k and r. Integrating once, we obtain 

a Hankel transform of order zero. The spectral form, ( 4 ) ,  is rather more convenient 
for discussion of asymptotic behaviour, but the transform is obviously better for 
numerical calculation and perhaps for some analytical work, bearing in mind the 
vast number of known integrals with Bessel functions as kernels. 

Only the u2 spectrum, @,,(lC), is axisymmetric: @,,(k) and QS3(k) are not. 
Phillips gives: 

Ql1(k) = k;k-28(k)e-2kx2, (8a) 

Q22(k) = @,,(k) = B(k) e-2kx2 = Ql1(k) + @33(k), (8b)  

@33(k) = k ; k 2 B ( k )  e-2kx2, (8c)  

where 8(k) is the spectrum of uzO, the normal velocity fluctuation in the plane 
x 2  = 0. We note that 

#ll(kl) = j @ 1 1 ( k ) d k 3  = k: jk-2 '22(k)dk3,  (9) 

so that $22(kl) and @22(k) can be replaced by k;2q511(kl) and k-2@2,(k) in equation 
( 1 )  and its inverse, equations ( 4 )  and (7) .  @22(k)  can therefore be derived directly 
from $,,(k,). Given @22(k) ,  B Z 2 ( y )  can be obtained by taking the (inverse) Hankel 
transform, and ~ ) ~ ~ ( k , )  is the Fourier transform of R22(r) = R22(r1). Finally 

$33(IC1) = $ll (k3)  = $22(lC1) - $ll(kl) 

from equation (3). Pll(k3) or its Fourier transform R,,(O, 0, r )  are relevant to the 
discussion of the fluctuating pressure field, below. 

Since Q,,(k) = &(l + cos 2$) @'22(k), where $ is the angle between k ,  and k, 
these derivations and some of the following ones could be expressed more neatly 
by introducing Hankel transforms of order two, but it was not considered worth 
while to write a computer program for this transform. 

(ii) Asymptotic results 

Various asymptotic results and approximations can be obtained for the one- 
dimensional and two-dimensional spectra in terms of one another. As can be 
seen from Phillips's analysis, continuity and axisymmetry require 

B(k) N B2k2+0(k4)  

15-2 
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for small k (that is, for kS, 1).  The behaviour of 8 ( k )  near k = 0 thus entirely 
determines the behaviour of @22(k)  = B(lc)e-2kXz for large x2/S,. It can be seen 
from figures 3 and 5 that the range of validity of the approximation 6(k )  = B2k2 
extends only as far as the peak of the $,,(kl) spectrum even a t  the largest value 
of x,/Sl, so that the asymptotic results for the spectra at large k,x, cannot yet be 
compared directly with experiment, but they are derived below for the sake of 
completeness. 

If we take m 
O(k) = 8,k" 

n=2 

near k = 0 then $,,(kl) and $,,(kl) can be obtained as the sum of integrals like 

putting k = k ,  cosh u, k ,  = k ,  sinh u) 2k,x, = x ,  we have 

an+, 
= 2k,n+l( - 1 %+I___ K0(x) = 2k~+1KKd,,,(x), say, (10) 

axn+l 

where KO(%) is the modified Bessel function of the second kind of order zero 
(&rKh,(x) in the notation of Jeffreys & Jeffreys (1956)).  This solution is analog- 
ous to the function Kin(x), the n-fold integral of Ko(x), tabulated by Bickley & 
Nayler (1935). 

Tor small x 

so that $22(kl) tends to a finite value as kl+ 0, unlike $ll(kl), which tends to zero 
as k:: this result is obtainable directly by putting k = 1k31 in the integral for QSn. 

For large x 

KO - (~/2x)$e-x ,  Kdn(x) N (77/2x)$e-x, also $n N en(71/X2)gk;+~e-2kixz .  

(12% b, c )  
A plausible form for O(k) for all k would be 02k2e--2kb, giving 

and 

for large k,x2 

Thus the condition for the sufficiency of the quadratic approximation to O(k)  is 
simply x2 9 b, which is equivalent to x2 9 S,, since 8, and b are alternative scales 
of the energy-containing eddies. When this condition is satisfied and O(k)  N 02kF, 

$,,(k,) - 02(m/x2)*k$e-2k1x~ for large k,x, (14a) - 0,/2x; for small k,x2. P 4 b )  
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&2(0) cannot be thought of as the intensity of the largest eddies, as it is simply 

2Jr @22(IC3) dk3* 

The result is consistent with 

Now 

= 2 e , k : ~ d , ( ~ )  if 8(k) - B2k2, 

N 6 - d e-2k1x2 = Q,,(k,) for large k lx2 ,  
2 ( 3 “  

62 2 
N - I c ,  for small k,x2. 

x2 

&(kl) and q522(kl) are equal for large k,x2 because, for large k,, k = k, throughout 
the range of k3 which contributes to the integral for $,,(k,). 

Putting k = k,coshu, etc., we have 

= ~ 0 2 k ~ ( c o s h 2 u -  1) coshue-2kix2co*hud u, 

which contains a factor Kd3(x) - Kd,(x) and is therefore of a smaller order of 
magnitude than q511(k,) and #22(kl) at large k1x2, since cosh2u N 1 unless 
e-2kixzcoshu N 0, by definition of ‘large ’ k,x2. This is the result of the kilk2 weight- 
ing factor which concentrates the power near the k,-axis in the wave-number 
plane. The rj11(Fc3) spectrum behaves analogously. For small klxg, 

as expected. 
$33(Ic1) $ 2 2 ( h )  - #ll(kl) 
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